Predicting Credit Card Fraud with R

4.5
stars

27 ratings

Offered By
In this Guided Project, you will:
1.5 hours
Intermediate
No download needed
Split-screen video
English
Desktop only

Welcome to Predicting Credit Card Fraud with R. In this project-based course, you will learn how to use R to identify fraudulent credit card transactions with a variety of classification methods and use R to generate synthetic samples to address the common problem of classification bias for highly imbalanced datasets—the class of interest (fraud) represents less than 1% of the observations. Class imbalance can make it difficult to detect the effect independent variables have on fraud, ultimately leading to higher misclassification rates. Fixing the imbalance allows the minority class (fraud) to be better learned by the classifier algorithms. After completing the project, you will be able to apply the methods introduced in the project to a wide range of classification problems that typically confront class imbalance, including predicting loan default, customer churn, cancer diagnosis, early high school dropout risk, and malware detection. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Skills you will develop

  • Data Analysis

  • Machine Learning

  • R Programming

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Reviews

TOP REVIEWS FROM PREDICTING CREDIT CARD FRAUD WITH R

View all reviews

Frequently Asked Questions